Esfuerzos en pavimentos rígidos
El espesor de las losas se calcula por medio de monogramas que elaboran las asociaciones de productores de cemento Pórtland, tomando en cuenta los esfuerzos siguientes a que están sometidas:
Esfuerzos debidos al transito
Esfuerzos debidos a la temperatura
Esfuerzos debidos al apoyo
Los esfuerzos debidos al transito se han estudiado en tres posiciones de las llantas.
La primera se da cuando la huella de la llanta es tangente en forma simultanea a dos orillas; o sea, la llanta esta en una esquina. De esta manera la losa trabaja en cantiliver y los esfuerzos principales de tensión se presentan en un ángulo de 45° respecto a las orillas y en la parte superior. Los esfuerzos por el transito se calculan con la siguiente formula:
El espesor de las losas se calcula por medio de monogramas que elaboran las asociaciones de productores de cemento Pórtland, tomando en cuenta los esfuerzos siguientes a que están sometidas:
Esfuerzos debidos al transito
Esfuerzos debidos a la temperatura
Esfuerzos debidos al apoyo
Los esfuerzos debidos al transito se han estudiado en tres posiciones de las llantas.
La primera se da cuando la huella de la llanta es tangente en forma simultanea a dos orillas; o sea, la llanta esta en una esquina. De esta manera la losa trabaja en cantiliver y los esfuerzos principales de tensión se presentan en un ángulo de 45° respecto a las orillas y en la parte superior. Los esfuerzos por el transito se calculan con la siguiente formula:
La siguiente posición estudiada se presenta cuando la huella de la lluvia es tangente solo a una orilla de la losa; en este caso, el esfuerzo principal de tensión es paralelo a la orilla y se da en la parte inferior. La magnitud de este esfuerzo se calcula con la siguiente formula
Por ultimo, han estudiado los esfuerzos de la losa de concreto hidráulico cuando la llanta esta en el centro de ella. En esta posición, los esfuerzos máximos de tensión se desarrollan en el lecho inferior de la losa y en forma radial. Su valor se obtiene de esta manera:
En estas igualdades:
P=carga trasmitida a la losa a través de la llanta (lb)
a,b,=semiejes de la elipse que representan la huella de la llanta
a= eje paralelo a la orilla o junta (pulg)
d=espesor de la losa (pulg)
E=modulo de elasticidad del concreto (lb/pulg)
U=relación de Poisson del concreto=0.15
K=modulo de reacción (lb/pulg3)
τ=radio de rigidez relativa (pulg)
Cuando el cambio de temperatura es igual en la parte superior y en la inferior de la losa, se presentan los fenómenos de dilatación y contracción, pero si se encuentran en forma simultanea a diferentes temperaturas, hay un gradiente que provoca la presencia de alabeos. Si la temperatura de la superficie es menor que en la parte inferior, el alabeo es hacia arriba; o sea, la superficie de rodamiento se toma cóncava. En el caso contrario, el alabeo es hacia abajo y por lo tanto la superficie de rodamiento es convexa.
En estos casos, los esfuerzos producidos por la temperatura no son importantes, siempre que no se agriete la losa; sin embargo, los esfuerzos debidos al transito se modifican, pues la losa no esta apoyada en forma continua y aparecen en le primer caso los esfuerzos de tensión en la parte superior y, en el segundo caso, en la parte inferior. Estos fenómenos de alabeo se alternan durante el día y la noche, por lo que se presentan las dos situaciones. Asimismo, cuando la superficie de rodamiento es cóncava, los esfuerzos aumentan en un 20% en relación con las losas apoyadas en forma continua; el caso contrario es menos critico, pero el efecto también es mayor cuando la sub-base es mas rígida.
Los esfuerzos debidos al apoyo pueden resultar de la fricción desarrollada entre la losa y la sub-base, y se presentan al disminuir la libertad de movimiento de la losa, y haber esfuerzos de tensión, calculados con la formula
P=carga trasmitida a la losa a través de la llanta (lb)
a,b,=semiejes de la elipse que representan la huella de la llanta
a= eje paralelo a la orilla o junta (pulg)
d=espesor de la losa (pulg)
E=modulo de elasticidad del concreto (lb/pulg)
U=relación de Poisson del concreto=0.15
K=modulo de reacción (lb/pulg3)
τ=radio de rigidez relativa (pulg)
Cuando el cambio de temperatura es igual en la parte superior y en la inferior de la losa, se presentan los fenómenos de dilatación y contracción, pero si se encuentran en forma simultanea a diferentes temperaturas, hay un gradiente que provoca la presencia de alabeos. Si la temperatura de la superficie es menor que en la parte inferior, el alabeo es hacia arriba; o sea, la superficie de rodamiento se toma cóncava. En el caso contrario, el alabeo es hacia abajo y por lo tanto la superficie de rodamiento es convexa.
En estos casos, los esfuerzos producidos por la temperatura no son importantes, siempre que no se agriete la losa; sin embargo, los esfuerzos debidos al transito se modifican, pues la losa no esta apoyada en forma continua y aparecen en le primer caso los esfuerzos de tensión en la parte superior y, en el segundo caso, en la parte inferior. Estos fenómenos de alabeo se alternan durante el día y la noche, por lo que se presentan las dos situaciones. Asimismo, cuando la superficie de rodamiento es cóncava, los esfuerzos aumentan en un 20% en relación con las losas apoyadas en forma continua; el caso contrario es menos critico, pero el efecto también es mayor cuando la sub-base es mas rígida.
Los esfuerzos debidos al apoyo pueden resultar de la fricción desarrollada entre la losa y la sub-base, y se presentan al disminuir la libertad de movimiento de la losa, y haber esfuerzos de tensión, calculados con la formula
Donde:
W= peso de la losa por unidad de superficie (kg/m2)
L=longitud de la losa (m)
C=coeficiente de fricción=1.5
También se pueden desarrollar esfuerzos en la losa cuando hay expansiones diferenciales en las capas de apoyo. Entonces lo mas conveniente es evitar estos esfuerzos con materiales de bajka plasticidad y lo mas homogéneo posible; además, el peso de la losa y de la sub-base también ayudan a tener menores expansiones de las terracerias.
W= peso de la losa por unidad de superficie (kg/m2)
L=longitud de la losa (m)
C=coeficiente de fricción=1.5
También se pueden desarrollar esfuerzos en la losa cuando hay expansiones diferenciales en las capas de apoyo. Entonces lo mas conveniente es evitar estos esfuerzos con materiales de bajka plasticidad y lo mas homogéneo posible; además, el peso de la losa y de la sub-base también ayudan a tener menores expansiones de las terracerias.
No hay comentarios:
Publicar un comentario