miércoles, 29 de abril de 2009

MÉTODOS DE CLASIFICACIÓN DE LA GRANULOMETRIA

En las clasificaciones basadas en las características granulométricas de los suelos, es costumbre distinguir las distintas fracciones por el nombre de algunos tipos de suelos como ser: limo, arcilla, etc. Las convenciones más universalmente aceptadas para este tipo de clasificación están indicadas en la forma del gráfico que se muestra luego.

Desde el punto de vista del ingeniero, la clasificación M.I.T. es preferible a las otras. En muchos casos, los informes con respecto a la cantidad del suelo y a su comportamiento no incluyen más que el análisis granulométrico de la fracción gruesa y el porcentaje del total que pasa el tamiz Nº200, que abarca todas las partículas menores de 0.074 mm. La partícula de tamaño 0.074 mm. es un poco mayor de 0.06 mm., que en la clasificación M.I.T. separa de la arena fina del limo.

Todo sistema de clasificación basado solamente en la granulometría puede conducir a errores, pues las propiedades físicas de la fracción más fina de los suelos dependen de otros factores ajenos al tamaño de los granos. Por ejemplo, en función de cualquiera de las convenciones comúnmente aceptadas que indica la figura anterior, un suelo formado de granos de cuarzo de tamaño coloidal debería ser clasificado como arcilla, cuando en realidad no tiene el más remoto parecido con dicho material. Por eso si los términos: limo o arcilla son utilizados para indicar tamaños de partículas que deben ir acompañados de la palabra "tamaño" en expresiones tales como "partículas de tamaño de arcilla". Además, como las clasificaciones granulométricas no han sido aun normalizadas, dichas expresiones deben ir acompañadas de valores numéricos que indiquen los límites del tamaño de las partículas que abarcan.

Salvo pocas excepciones, los suelos naturales consisten en una mezcla de 2 o más fracciones granulométricas, de modo que en función de su granulometría, un suelo natural puede identificarse con los nombres de sus componentes principales, tales como: "arcilla limosa" o "limo arenoso", o bien se le puede asignar al mismo un símbolo que lo identifique con una de varias mezclas normales de las distintas fracciones granulométricas.

La identificación mencionada se lo realiza con el uso de diagramas, como el adoptado por el "Public Road Administration" (Triángulo de Withney). En el cual cada uno de los tres ejes coordenadas sirve para representar una de las tres fracciones granulométricas: arena, limo y arcilla. El diagrama está dividido en zonas y a cada zona se le asigna un nombre. Las 3 coordenadas de un punto representan los porcentajes de las 3 fracciones presentes en un suelo cualquiera y determinan la zona a la cual el mismo pertenece.

La identificación de un suelo dado, por comparación con mezclas normales; puede efectuarse rápidamente por medio de curvas granulométricas tipo. En dicho gráfico, cada curva granulométrica lleva un símbolo de identificación.

EN FUNCIÓN DE SUS CARACTERÍSTICAS GRANULOMÉTRICAS

Desde el instante mismo en que las propiedades de los suelos adquirieron importancia práctica, se ha querido, con frecuencia correlacionar las características granulométricas con las constantes del suelo necesarias para resolver los problemas de la práctica, sin que se haya llegado jamás a resultados satisfactorios. Por ejemplo: los intentos efectuados para determinar el coeficiente de permeabilidad de los suelos partiendo de los resultados del análisis granulométrico, han fracasado debido a que la permeabilidad depende en gran parte de la forma de los granos.

Así mismo se ha sostenido que la fricción internas de las arenas bien graduadas compactadas, es mayor que la que corresponde a arenas uniformes en la misma condición. Si bien hay evidencias prácticas, por determinaciones efectuadas en sitio, que indican que esta aseveración quizás sea correcta, hay que recordar que el ángulo de fricción interna de una arena, depende no solo de las características granulométricas, sino también de la forma de los granos, y de la rugosidad de las superficies. Así por ejemplo los ángulos de fricción interna de dos arenas de granulometrías idénticas pueden ser muy diferentes. Lo cierto es que hasta el presente no se ha obtenido ninguna relación bien definida entre granulometría y ángulo de fricción interna, esto es más evidente en el caso de los suelos finos, limos, arcillas, etc.

REPRESENTACIÓN ABREVIADA DE LA GRANULOMETRÍA:

Cuando se tienen que indicar los resultados esenciales de los análisis mecánicos de un gran número de suelos, puede resultar conveniente expresar las características granulométricas de cada suelo por medio de valores numéricos indicativos de algún tamaño de grano característico y del grado de uniformidad. El procedimiento más utilizado es el conocido con el nombre de método de Allen Hazen. Realizando un gran número de ensayos con arena áspera filtros, Hazen encontró que la permeabilidad de dichas arenas en estado suelto depende de dos cantidades que denominó diámetro efectivo y coeficiente de uniformidad. El diámetro efectivo D10 es el tamaño de partícula que corresponde a P = 10% de la curva granulométrica, de modo que el 10 % de las partículas son más finas que D10, y el 90% más grueso. El coeficiente de uniformidad U es igual a D60/D10, donde D60 es el tamaño de partícula que corresponde a P = 60%.

La experiencia de Hazen indujeron a otros investigadores a suponer, en forma más o menos arbitraria que las cantidades D10 y U eran también apropiadas para expresar las características granulométricas de los suelos naturales de granulometrías mixtas, pero con el mejor conocimiento de las propiedades de los suelos de granos finos, se ha hecho evidente que las características de los mismos dependen principalmente de la fracción más fina que P = 20% y que pueden resultar preferible seleccionar D20 y D70 como cantidades representativas, sin embargo estos cambios no son de importancia suficiente en la práctica.

lunes, 27 de abril de 2009

CURVA GRANULOMETRICA

Los resultados obtenidos en un análisis mecánico, generalmente, se los representan sobre un papel semi-logarítmico, por un curva llamada "granulométrica". Los porcentajes que se indican son acumulados.

Para graficar la curva granulométrica, debemos tomar en cuenta que los porcentajes de muestra que pasa cada uno de los tamices, se encuentran en el eje de las ordenadas y a una escala aritmética, en cambio la ordenación de la abertura del tamiz se encuentra en el eje de las abscisas y con una escala logarítmica; esto para facilitar la construcción de la curva granulométrica. El propósito del análisis granulométrico, es determinar el tamaño de las partículas o granos que constituyen un suelo y fijar en porcentaje de su peso total, la cantidad de granos de distintos tamaños que el suelo contiene.

La granulometría correcta es fundamental para muchos elementos de la cantidad del suelo, como ya se ha dicho en particular es importante para la economía y la manejabilidad.

Los efectos que la granulometría puede tener sobre el suelo se ha estudiado extensamente en la materia de materiales de construcción y mecánica de suelos.

El método más directo para separar un suelo en fracciones de distinto tamaño consiste en el uso de tamices. Pero como la abertura de las mallas más fina que se fabrica corrientemente es de 0.07 mm. El uso de tamices esta restringido al análisis de arenas limpias, de modo que, si un suelo contiene partículas menores de dicho tamaño debe ser separado en dos partes por lavado sobre aquel tamiz.

La parte de suelo retenido por el tamiz es sometida al tamizado y aquella demasiado fina para ser retenida por tamices y que ha sido arrastrada por el agua, es analizada por medio de métodos basados en la sedimentación.

Los métodos para efectuar análisis granulométricos por vía húmeda están basados en la ley de Stokes, que fija la velocidad a que una partícula esférica de diámetro dado sedimenta en líquido en reposo. En el método que se utiliza comúnmente en mecánica de suelos, de 20 a 40 gr. de suelos arcillosos o de 50 a 100 gr. de suelo arenoso, se mezclan con 1 lt. de agua, se agitan y se vierten en un recipiente. A intervalos de tiempos dados se mide la densidad de la suspensión por medio de un hidrómetro.

La forma más conveniente para representar el análisis granulométrico la proporciona el gráfico semi-logarítmico indicado en la figura que se muestra luego.

En este las abscisas representan el logaritmo del diámetro de las partículas, y las ordenadas el porcentaje P en peso de los granos menores que el tamaño indicado por las abscisas. Cuanto más uniforme es el tamaño de los granos, tanto más inclinada es la curva, la línea vertical representa a un polvo perfectamente uniforme.


Tabla granulometrica


MÉTODOS DE EXPLOTACIÓN PARA CLASIFICACION DE SUELOS

Los métodos más conocidos para la exploración y toma de muestra son los siguientes:

a) Penetró metros

b) muestras "lavadas"

c) muestras obtenidas con taladros helicoidales y tipo balde

d) pozos de exploración

e) métodos geofísicos

f) sondeos

a) Penetró metros. Se conocen dos tipos de Penetró metros que son: los dinámicos y los estáticos.

Penetró metros dinámicos. Son barras que tienen, generalmente extremos de forma cónica de 45 a 60 grados. Estas barras son hincadas en el suelo por medio de golpes, el número de golpes, varia de acuerdo al tipo de suelo y a la profundidad en la que se encuentra el mismo. Este penetró metro es golpeado con una masa conocida y la penetración será leída para un determinado número de golpes.

Penetró metros estáticos. Consiste en barras con los extremos cónicos que se introducen a presión en el subsuelo. Los más utilizados son los conos que se introduce de 20 a 40 cm / min. Aplicando una presión constante. La profundidad de penetración no es medida para cada incremento de carga.

b) Muestras lavadas. Para este método se emplean equipos de perforación normalizados que mediante agua a presión se va lavando el material del suelo a medida que se introduce la tubería de perforación. Por el color y textura de los materiales se puede determinar el tipo de suelo que estamos perforando, la variación en el color y textura también permite saber el espesor de la capa del suelo.

c) Muestras obtenidas por taladros helicoidales y de tipo balde. Generalmente los taladros helicoidales son empleados en suelos con material cohesivo y con un elevado contenido de humedad. Los suelos con estas características se adhieren a las paredes del taladro de donde son extraídos por el operario.

Los taladros con muestra tipo balde, son muy empleados en la actualidad, puesto que permite obtener grandes muestra en profundidades que alcanzan unos 60 metros.

d) Pozos de exploración. La excavación de pozos o fosas de exploración nos permite con facilidad el espesor de los diferentes estratos.

e) Métodos geofísicos. Son generalmente usados en la minería, alguno de ellos se emplean en la ingeniería (en trabajos donde no se requiere muestreo).


f) Sondeos. Es el método más recomendable para exploraciones a profundidad en el subsuelo. Este método permite, una vez realizada la clasificación litológica de las muestras obtenidas, una mejor elaboración del perfil del subsuelo, que en los otros métodos no se puede realizar por el reducido tamaño de las muestras.

La determinación de las partículas de suelo en cuanto a su tamaño, se llama análisis granulométrico; se hace por un proceso de tamizado, en suelos de grano grueso, y por un proceso de sedimentación en agua ( análisis granulométrico por vía húmeda ), en suelo fino.

Cuando se usan ambos procesos, el ensayo se denomina análisis granulométrico combinado. El análisis granulométrico, consiste en la determinación de los porcentajes de piedra, grava, arena, limo, arcilla, que hay en una cierta masa de suelo.

domingo, 26 de abril de 2009

ANÁLISIS GRANULOMETRICO

REFERENCIAS:

AASHTO T37-70 ASTM D421-58

ASSTHO T33-70 ASTM D422-63

1. OBJETIVO:

El objetivo principal que persigue este ensayo de laboratorio, es el de poder clasificar el suelo, según el tamaño de sus partículas por medio de la granulometría.

.

2. FUNDAMENTO TEORICO:

El estudio del suelo y subsuelo no debe limitar en donde se realizará la obra civil, sino debe abarcar las zonas aledañas a la construcción. El estudio debe incluir todos los principales accidentes geográficos como ser quebradas, riachuelos, zona anegadas y la vegetación que existe en toda la zona elegida para la construcción. Es de igual importancia tener los datos las condiciones físicas naturales como ser humedad, presión, temperatura , etc. Es de mucha ayuda conocer el perfil del subsuelo ya que con esto podemos ver el nivel friático, la calidad o eficiencia del drenaje.

Una parte importante de los criterios de aceptabilidad de suelos para carreteras, aeropistas, presas de tierra, diques y otro tipo de terraplenas es el análisis granulométrico.

La información obtenida del análisis granulométrico puede en ocasiones utilizarse para predecir movimientos del agua a través del suelo, aún cuando los ensayos de permeabilidad se utilizan más comúnmente. La susceptibilidad de sufrir la acción de las heladas en suelo, una consideración de gran importancia de climas muy fríos, puede predecirse a través del análisis granulométrico del suelo.

Los suelos muy finos son fácilmente arrastrados en suspensión por el agua que circula a través del suelo y en los sistemas de sub drenaje usualmente se colman con sedimentos rápidamente a menos que sean protegidos adecuadamente por filtros de material granular debidamente graduado. La gradación adecuada de estos materiales , denominados filtros, puede ser establecida a partir de su análisis granulométrico.

El análisis granulométrico es un intento de determinar las proporciones relativas de los diferentes tamaños de grano presentes en una masa de suelo dada. Obviamente para obtener un resultado significativo la muestra debe ser estadísticamente representativa de la masa del suelo.

Como no es físicamente posible determinar el tamaño real de cada partícula independiente del suelo, la práctica solamente agrupa los materiales por rangos de tamaño. Para lograr esto se obtiene la cantidad de material que pasa a través de un tamiz con una malla dada pero que es retenido en un siguiente tamiz cuya malla tiene diámetros ligeramente menores a la anterior y se relaciona esta cantidad retenida con el total de la muestra pesada a través de los tamices. Es evidente que el material retenido de esta forma en cualquier tamiz consiste en partículas de muchos tamaños todos los cuales son menores al tamaño de la malla del tamiz en el cual el suelo fue retenido.

Los tamices son hechos de malla de alambre forjado con aberturas rectangulares que varían en tamaño desde 101.6 mm (4") en la parte más gruesa hasta el número 400 (0.038 mm) en la serie correspondiente a suelo fino, sin embargo, en la práctica el tamiz mas pequeño es el tamiz No.200 (0.075). Para mallas de tamaño inferior al de este tamiz es difícil permitir el paso libre del agua. El suelo, por supuesto, provee generalmente más resistencia que el agua al tamizado; por consiguiente, los tamices de malla más pequeña que el número 200 son más interesantes desde un punto de vista académico que desde el práctico.

Todos los sistemas de clasificación utilizan el tamiz No.200 como un punto divisorio, las clasificaciones se basan generalmente en términos de la cantidad retenida o cantidad que pasa a través del tamiz No.200. Ocasionalmente es deseable conocer la escala aproximada de partículas de suelo menores que el tamiz No.200. Cuando se presenta esta necesidad, entonces se recurre al método del análisis granulométrico del hidrómetro, que es comúnmente utilizado.

El proceso de tamizado no provee información sobre la forma de los granos de suelo, si son angulares o redondeados. Solamente da información sobre los granos que pueden pasar, o qué orientación adecuada pasa, a través de una malla de abertura rectangular de un cierto tamaño. Obviamente, en muestras de un cierto tamaño no siempre es posible que todas las partículas pasen a través del tamiz respectivo, ya que no es posible que no se puedan orientar adecuadamente para pasar a través de su tamiz correspondiente, ó que las partículas más pequeñas podrían no haber sido totalmente separados en el proceso de pulverización, e incluso las partículas más finas, especialmente la fracción menor que el tamiz 200 en tamaño, pueden adherirse a las partículas mayores y no pasar a través del tamiz adecuado.

La información obtenida del análisis granulométrico se presenta en forma de curva. Para poder comparar suelos y visualizar más fácilmente la distribución de los tamaños de granos presentes, y como una masa de suelos típica pueden tener partículas que varíen entre tamaños de 2.00 mm y 0.075 mm las más pequeñas, por lo que es necesario recurrir a una escala muy grande para poder dar el mismo peso y precisión de lectura a todas las medidas, es necesario recurrir a una presentación logarítmica para los tamaños de partículas. Los procedimientos patrones utilizan el porcentaje que pasa como la ordenada en la escala natural de la curva de distribución granulométrica.

Es evidente que una curva de distribución granulométrica solo pueda aproximar la situación real. Esto se debe a varias razones consideradas hasta aquí, incluyendo las limitaciones físicas para obtener muestras estadísticamente representativas, la presencia de grumos en el suelo, la limitación práctica impuesta por la utilización de mallas de forma rectangular para medir partículas de suelo de forma irregular y el número limitado de tamices utilizables en el análisis. La exactitud del análisis es más cuestionable aún para los suelos de grano fino (más fino que el tamiz No.4) que para los suelos gruesos, y la práctica común y ampliamente seguida de utilizar suelos secados al horno puede influir el análisis en otro tanto.

DETERMINACIÓN DEL CONTENIDO DE HUMEDAD III

3. MATERIAL EQUIPO.

- Suelo natural inalterado.

- Cilindros para extraer la muestra y no afecte el contenido de humedad.

- Hincador.

- Horno.

- Bolsas nylon.

- Recipientes pequeños.

5.- PROCEDIMIENTO DEL ENSAYO.

- Ubicar el lugar indicado, excavar un circulo de diámetro de 1,50 mt.

- Excavar hasta que no exista capa vegetal.

- La excavación será de tipo cráter como muestra en el montaje.

- Hincar el cilindro y con la ayuda de un pisón realizar un cierto numero de golpes que así lo requiera para llenar totalmente le cilindro.

- Sacar cuidadosamente el cilindro y colocar en una bolsa nylon para no perder la humedad

- Llevar a laboratorios pesar el cilindro mas muestra húmeda.

- Luego sacar 3 muestra en platos separados y llevar al horno

- Vaciar la muestra del cilindro y pesar el cilindro vacío parea aplicar a la formula correspondiente.

- Después de 24 horas tomar nota de las 3 muestras secas y realizar los cálculos correspondientes.

jueves, 23 de abril de 2009

DETERMINACION EL CONTENIDO DE HUMEDAD II

INVESTIGACION DEL SITIO:

Por lo general, no se asigna a esta primera operación la oportunidad que merece. El estudio del sitio donde se proyecta construir un puente, un pavimento, una edificación, etc., y particularmente la operación de obtener muestras, se deja muchas veces en manos de personal poco experimentado.

Tanto el estudio del sitio donde se proyecta levantar una estructura, como la obtención de muestras, es de gran importancia y debería hacerse bajo la dirección y constante supervisión de un ingeniero especialista en suelos o de un geólogo.

El estudio del suelo no debe limitarse al lugar donde estará situada una estructura, sino que debe comprender toda la zona circunvecina. El estudio del sitio debe comprender los principales accidentes naturales del terreno, como ser: quebradas, riachuelos, zonas anegadizas, vegetación existente , etc., datos estos que son muy valiosos para poder proyectar sistemas de drenaje, prevenir y evitar deslizamientos que pudieran presentarse posteriormente, etc., Asimismo, el conocimiento de las características de la región: si es, o no una zona lluviosa, etc., es importante. Los taludes de los cortes a efectuarse, de los terraplenes a construirse, los espesores de pavimento, la profundidad de las excavaciones para las fundaciones, etc., pueden ser modificados de acuerdo con estos datos de campo.

Hoy en día el estudio del sitio se ha simplificado grandemente pues se cuenta ya con una información valiosa y detallada proveniente de los levantamientos topográficos que se realizan, de los estudios geológicos de la región y de los levantamientos aerofotogramétricos. Los mapas topográficos, geológicos, fotografías aérea , mosaicos, etc., proporcionan datos valiosísimos al ingeniero o geólogo que está a cargo del estudio de una zona determinada.

PERFIL DEL SUBSUELO:

Una vez conocidos los perfiles topográficos de la zona y establecida que haya sido la sub-rasante, es conveniente conocer el perfil del subsuelo, es decir, conocer las clases de material que forman el subsuelo a diferentes profundidades. Un perfil de subsuelo nos proporcionará información valiosa acerca de la clase de material o materiales existentes, situación de las navas de agua, etc.

Por regla general, deben obtenerse muestras del material tanto en sitios que quedan sobre la sub-rasante como debajo de ella . Las muestras que se obtengan en los sitios que quedan encima de la sub-rasante, nos permitirá conocer las clases de material que se usará en terraplenes y rellenos en general. En cambio, las muestras que obtengamos en aquellos sitios que quedan debajo de la sub-rasante, nos permitirán conocer las condiciones de estabilidad que presenta el terreno de fundación.

OBTENCION DE MUESTRAS:

La obtención de muestras es una de las operaciones mas importantes, pues requiere no solo conocimientos de suelos y materiales, sino experiencia para seleccionar el o los sitios donde deberán tomarse las muestras y determinar, además la profundidad a la cual deberá extraerse dichas muestras.

La muestra que se extraiga debe ser representativa, es decir, debe ser en lo posible, una fiel representación del material existente en el sitio.

Si la obtención de muestras o testigos no ha sido cuidadosamente realizada, se corre el riesgo de que las muestras obtenidas den una idea falsa del terreno de fundación o del material a emplearse.

Si las muestras obtenidas no son una fiel representación del material existente en el sitio, los mejores análisis y ensayos de laboratorio serán inútiles y la información que se obtenga de estos ensayos pueden ser mas bien confusa y a veces perjudicial.

CLASES DE MUESTRAS:

En general, las muestras pueden clasificarse "alteradas" e "inalteradas". Como sus nombres indican, muestras alteradas o perturbadas serán aquellas cuya estructura haya sido alterada, y muestras inalteradas o sin perturbar aquellas que prácticamente conservan la misma estructura que la tenía en el sitio donde fueran extraídas.

Como es lógico suponer, se tomaran muestras alteradas cuando el material que se analice vaya a ser empleado en la construcción de terraplenes, en la preparación de muestras estabilizadas, etc., es decir, cuando se utiliza como material de construcción.

En cambio se obtendrán muestras inalteradas, cuando se necesite conocer las condiciones e estabilidad del terreno como en el estudio de taludes, o cuando se desee conocer la capacidad de soporte del terreno donde se construirá un puente, edificio, etc.

ZONAS DE PRESTAMO:

Lo que interesa fundamentalmente de los sitios de préstamo que han sido seleccionados para obtener el material destinado a la construcción de una carretera, calle, o pista de aterrizaje, es conocer la clase o clases de material existente y el volumen aproximado que pueda ser excavable y removible.

Para explorar una zona de préstamo en terrenos llanos o semiplanos, es preferible cavar fosos o abrir zanjas extrayendo el material que se desee analizar, y en caso de colinas o terrenos accidentados es aconsejable hacer cortes o excavaciones.

TERRAPLENES.

En los terraplenes debemos estudiar no solo el material que formará el terraplén propiamente dicho, sino también el terreno de fundación sobre el cual descansará el terraplén que como ya sabemos, debe ser firme y estable.

La determinación del contenido de humedad es un ensayo rutinario para determinar la cantidad de agua presente en una cantidad dada de suelo en términos de su peso en seco. Como una definición se tiene:


Donde:

Ww, es el peso del agua presente en la masa de suelos

Ws, es el peso de los sólidos en el suelo.


Podría definirse que le contenido de humedad como la relación del peso de agua presente y el total de peso de la muestra; sin embargo, esto daría una cantidad en el denominador de la fracción que podría depender de la cantidad de agua presente:



Esto no es deseable pues el contenido de humedad estaría de esa forma relacionada a una cantidad variable y no a una cantidad constante. Esto puede verse fácilmente pues Ww aparece en ambos, numerador y denominador de la fracción. El contenido de humedad se expresa en algunas veces en función del volumen como:



miércoles, 22 de abril de 2009

DETERMINACIÓN DEL CONTENIDO DE HUMEDAD

1. OBJETIVO:

El objetivo es el de determinar la cantidad de humedad contiene un suelo aprendiendo a sacar una muestra inalterada.

2. FUNDAMENTO TEORICO:

El suelo es el material de construcción más barato y mas abundante del mundo. Desde el periodo neolítico, se utiliza para realizar las primeras construcciones Civiles como ser presas, viviendas, tumbas etc.

Para el empleo de suelo como material de construcción debe seleccionarse apropiadamente el mismo, así como también la más adecuada colocación, una masa de suelo se denomina relleno, los problemas más habituales es este tipo de construcción se debe a la gran diversidad de los puntos de extracción, denominados zonas de préstamo, una parte esencial de la tarea del ingeniero es la de determinar las propiedades del suelo y su utilización o rechazo de acuerdo a las exigencias del proyecto.

El suelo sirve también como cimentación para soportar todo tipo de estructuras y terraplenes, estos trabajos se realiza sobre una capa sólida de suelo, si la capa del terreno no tuviera la solidez necesaria el ingeniero debe realizar estructuras para la retención o sostenimiento del terreno, también se debe realizar este tipo de trabajos en excavación subterráneas.

Todo suelo debe ser identificado clasificado por laboratorista antes de ser sometido a un ensayo.

Para simplicidad, los suelos se pueden dividir en dos clases:

a) Granulares:

Son los suelos que no poseen ninguna cohesión, y consisten en rocas, gravas, arenas y limos.

b) Cohesivos:

Son suelos que poseen características de cohesión y plasticidad . Dichos suelos pueden ser granulares con parte de arcilla o limo orgánico, que les importen cohesión y plasticidad, o pueden ser arcillas o limos orgánicos sin componentes granulares.

Existen numerosas clasificaciones de suelos, pero la mas recomendable es la clasificación unificada adoptada por el cuerpo de ingenieros y por el "BUREAU OF RECLAMATION", de los Estados Unidos.

Los factores que intervienen en la formación de los suelos podríamos resumirlos a los siguientes:

a) Materia de origen, o roca madre, de la cual se ha originado el suelo;

b) el agua;

c) la topografía del lugar;

d) el clima de la región;

e) la Temperatura;

f) los organismos existentes, y

g) el ser humano.

LIMITE DE CONTRACCION: PROCEDIMIENTO EXPERIMENTAL

. PROCEDIMIENTO EXPERIMENTAL.

· Se toma alrededor de 40 gramos de suelo de material representativo, del utilizado para las prácticas de limite liquido y plástico, que pase a través del tamiz N° 40, y mezclarlo cuidadosamente con agua común hasta lograr una pasta cremosa que puede colocarse dentro del recipiente de contracción sin dejar ningún vació.

· LA consistencia del suelo debería obtenerse utilizando un contenido de humedad cercano o algo superior al límite liquido del suelo.

· Recubrir ligeramente el interior de la capsula o recipiente de contracción (ya sea de porcelana o de metal, con vaselina de petróleo, grasa de silicona para prevenir que el suelo se adhiera al recipiente y/o se formen grietas durante el secado. Pese el recipiente y registre su peso.

· Llenar el recipiente en tres capas colocando aproximadamente 1/3 de la cantidad de suelo seco necesaria para llenar el recipiente cada vez y darles golpes suaves sobre una base firme hasta que el suelo fluya dentro del recipiente y se note la ausencia total de burbujas de aire. Repetir la misma operación con la segunda y tercera capa. Al terminar se debe enrasar cuidadosamente el suelo dentro del recipiente utilizando una espátula de tamaño mediano, y a continuación pesar el recipiente con el suelo húmedo.

· Secar al aire del laboratorio la galleta hasta que la superficie cambie a un color muy claro (del orden de 6 a 8 horas). A continuación introduzca la muestra en un horno y mantenga la temperatura constante entre 105 y 110°C hasta obtener un peso constante. Saque a continuación el recipiente con el suelo seco del horno y obtenga el peso de recipiente mas suelo seco. El secado al aire de la muestra reduce la posibilidad de la formación de grande grietas de contracción en el suelo debido a la rápida perdida de humedad y evita por otra parte la perdida de suelo dentro del horno debido a la posibilidad de “ebullición” del suelo.

· Encontrar el volumen del recipiente de contracción en cm3; para esto es necesario, en primer lugar, llenar el recipiente de contracción con mercurio metálico hasta que se derrame ligeramente. A continuación se debe colocar el recipiente lleno sobre un vidrio pequeño tipo vidrio de reloj, y presionando por encima utilizando una lamina de vidrio gruesa con el fin de que la superficie de mercurio empareje y se remueva el exceso. Inmediatamente se debe retornar el mercurio sobrante a su recipiente correspondiente. A continuación se debe echar el mercurio retenido en el recipiente de contracción en un cilindro volumétrico graduado de vidrio y leer directamente el volumen del recipiente de contracción. Como alternativa, es posible pesar el plato o recipiente de contracción más el mercurio y luego registrar el peso del recipiente vacio y calcular el volumen basado en un peso promedio unitario para el mercurio 13.53 gr/cm3.

· Determinar el volumen de la pastilla o galleta de suelo seco, llenando con mercurio el recipiente de vidrio que forma parte del equipo de limite de contracción, el cual deberá colocarse de antemano sobre una superficie grande y plana que permita recoger el mercurio sobrante . A continuación se debe tomar la placa de vidrio y hacerla ejercer presión de forma que el mercurio en exceso se derrame del recipiente. A continuación se debe registrar el peso del recipiente de vidrio lleno de mercurio.

· Retornar el recipiente de vidrio lleno de mercurio a su posición original sobre el recipiente de cartón, y colocar sobre la superficie de mercurio la galleta de suelo seco (debe flotar). Tratar de retirar del mercurio, por sifonamiento y mediante simple observación visual, un volumen aproximadamente igual al de la galleta de suelo seco. A continuación se debe tomar la placa de vidrio provista con tres apoyos, colocar los apoyos o puntas sobre la superficie lateral de la galleta de suelo, y sumergirla permitiendo que el mercurio en exceso se derrame siendo desplazado fuera del recipiente de vidrio. Cuando el recipiente de vidrio se encuentre exactamente lleno con el mercurio, la galleta de suelo, y las tres protuberancias o apoyos de la placa de vidrio, se debe retirar la placa de vidrio y la galleta de suelo, y proceder a registrar el peso del recipiente de vidrio y el mercurio remanente. La diferencia entre este peso registrado anteriormente del recipiente de vidrio lleno con mercurio en el paso anterior, es el peso del mercurio desplazado por la galleta de suelos eco. El volumen de la galleta de suelo es el peso del mercurio desplazado dividido entre el peso promedio unitario del mercurio 13.53 gr/cm3

domingo, 19 de abril de 2009

COMPACTACIÓN DE LA SUB-BASE, DE LA BASE Y CAPA DE RODAMIENTO

COMPACTACIÓN DE LA SUB-BASE.

Para todos los tipos de tráfico la sub-base ha de compactarse hasta alcanzar un mínimo del 97 % de la densidad de laboratorio obtenida según los métodos ASTM-D-1559, D-1560 o ASSHO-T-16.

COMPACTACIÓN DE LA BASE Y CAPA DE RODAMIENTO.

Las capas de base, así como la niveladora y la superficial, deben compactarse hasta alcanzar un mínimo del 97 %, de la densidad de laboratorio obtenida según los métodos ASTM-D-1559, D-1560 o ASSHO T-16.

COMPONENTES ESTRUCTURALES DEL PAVIMENTO

1.1. Subrasante

a) Si el terreno de fundación es pésimo, debe desecharse el material que lo compone siempre que sea posible, y sustituirse este por un suelo de mejor calidad.

b) Si el terreno de fundación es malo, habrá que colocar una sub - base de material seleccionado antes de colocar la base.

c) Si el terreno de fundación es regular o bueno, podría prescindirse de la sub - base.

1.2. Sub-base

Servir de drenaje al pavimento.

b) Controlar o eliminar en lo posible, los cambios de volumen de elasticidad y plasticidad perjudiciales que pudiera tener el material de la sub - rasante.

c) Controlar la ascensión capilar del agua proveniente de las capas friáticas cercanas o de otras fuentes,

protegiendo así el pavimento contra los Hinchamientos que se producen en Épocas de helada. Este hinchamiento es causado por el congelamiento del agua capilar, fenómeno que se observa especialmente en suelos limosos, donde la ascensión del agua capilar es grande.

El material de la sub - base debe ser seleccionado y tener mayor capacidad de soporte que el terreno de fundación compactado. Este material puede ser arena, grava, escoria de altos hornos o residuos de material de cantera.

Si la función principal de la sub - base es de servir de capa de drenaje, el material a emplearse debe ser granular, y la cantidad de material fino (limo y arcilla) que pase el tamiz No. 200 no será mayor del 8%.

1.3. Base

Esta capa tiene por finalidad, la de absorber los esfuerzos trasmitidos por las cargas de los vehículos y, además, repartir uniformemente Estos esfuerzos a la sub - base y por medio de esta al terreno de fundación.

Las bases pueden ser granulares, o bien estar constituidas por mezclas bituminosas o mezclas estabilizadas con cemento u otro ligante.

El material pétreo que se emplea en la base, debe llenar los siguientes requisitos:

a) Ser resistente a los cambios de humedad y temperatura.

b) No presentar cambios de volumen que sean perjudiciales.

c) El porcentaje de desgaste, según el ensayo de " Los Angeles " debe ser inferior a 50.

d) La fracción del material que pase el tamiz No. 40, ha de tener un Limite Liquido del 25 %, y un Indice

de Plasticidad inferior a 6.

e) La fracción que pasa el tamiz No. 200, no podrá exceder de 1/2 y en ningún caso los 2/3 de la fracción que pasa el tamiz No. 40.

f) La graduación del material de la base, es menester que se halle dentro de los limites establecido en las normas o en el pliego de especificaciones técnicas.

g) El C.B.R. de diseño debe ser superior al 50 %.

Por lo general la capa base se emplea piedra triturada o chancada, grava o mezclas estabilizadas, etc.

1.4. Capa de rodadura

Su función primordial será proteger la base impermeabilizando la superficie, para evitar así posibles infiltraciones del agua de lluvia que podría saturar total o parcialmente las capas inferiores. Además evita que se desgaste o se desintegre la base a causa del transito de los vehículos.

Compactación del terreno de fundación.

Si los suelos del terreno de fundación son arcillosos, deberá exigirse en el campo un mínimo de 95 % de la densidad de laboratorio, determinada según el método AASHO T-180-D.

Además, el espesor mínimo del terreno de compactación debidamente compacto, estará relacionado con el tipo de tránsito. Así por ejemplo:

a) Si el " valor del Índice de tráfico " es menor que 10, o sea si hay " tráfico reducido ", el terreno de fundación habrá de compactarse de 6 a 12 pulgadas (15 a 30 cm.) de espesor como mínimo.

b) Si el " valor del Índice de tráfico ", está comprendido entre 10 y 100, es decir que hay un " tráfico mediano ", el terreno de fundación se compactará de 12 a 18 pulgadas (30 a 45 cm.) como mínimo.

c) Si el " valor del Índice de tráfico ", es mayor de 100, o sea, si hay " tráfico intenso ", el terreno de fundación será compactado de 18 a 24 pulgadas (45 a 65 cm.) como mínimo.


Si el terreno de fundación está formado por suelos no cohesivos, deberá exigirse una compactación no menor del 100 % de la densidad obtenida en laboratorio según el método AASHO T-180-D. Además, el espesor del terreno de fundación compactado tiene que ser:

a) No menor de 6 a 12"(15 a 30 cm), para tráfico reducido.

b) No menor de 12 a 18"(30 a 45 cm), para tráfico regular.

c) No menor de 18 a 24"(45 a 60 cm), para tráfico intenso